# Nitrogenase Reactivity: Methyl Isocyanide as Substrate and Inhibitor<sup>†</sup>

Judith F. Rubinson, James L. Corbin, and Barbara K. Burgess\*

ABSTRACT: We have examined the interaction of methyl isocyanide with the purified component proteins of Azotobacter vinelandii nitrogenase (Av1 and Av2). CH<sub>3</sub>NC was shown to be a potent reversible inhibitor ( $K_i = 158 \mu M$ ) of total electron flow, apparently uncoupling magnesium adenosine 5'-triphosphate hydrolysis from electron transfer to substrate. CH<sub>3</sub>NC is a substrate ( $K_m = 0.688 \mu M$  at Av2/Av1 = 8), and extrapolation of the data indicates that at high enough CH<sub>3</sub>NC concentration, H<sub>2</sub> evolution can be eliminated. The products are methane plus methylamine (six electrons) and dimethylamine (four electrons). There is an excess (relative to methane) of methylamine formed, which may arise by

hydrolysis of a two-electron intermediate. A rapid high-performance liquid chromatography/fluorescence method was developed for methylamine determination. The products  $C_2H_4$  and  $C_2H_6$  appear to be formed via a reduction followed by an insertion mechanism.  $CH_3NC$  appears to be reduced at an enzyme state more oxidized than the one responsible for  $H_2$  evolution or  $N_2$  reduction. Other substrates  $(C_2H_2 > N_2 \simeq$  azide  $> N_2O$ ) all both relieve  $CH_3NC$  inhibition and inhibit  $CH_3NC$  reduction. Both effects occur in the same relative order, implying productive (substrate) and nonproductive (inhibitor) modes of binding of  $CH_3NC$  to the same site.

The enzyme nitrogenase is composed of two separately purified proteins, called the molybdenum-iron protein (MoFe protein) and the iron protein (Fe protein), whose properties have been recently reviewed (Orme-Johnson et al., 1977; Mortenson & Thorneley, 1979; Smith, 1983). Nitrogen fixation and all other reductions catalyzed by the nitrogenase system require both component proteins, a source of reducing equivalents, protons, and MgATP<sup>1</sup> (Bulen & LeComte, 1966). The Fe protein is generally accepted as a specific electron donor to the MoFe protein (Hageman & Burris, 1978a,b; Ljones & Burris, 1978a,b; Braaksma et al., 1982), which is believed to contain the site of substrate reduction (Shah et al., 1973; Hageman & Burris, 1979). In addition to N<sub>2</sub>, nitrogenase catalyzes the reduction of protons, nitrous oxide, acetylene, azide, cyanide, alkyl cyanides, alkyl isocyanides, hydrazine, cyclopropene, and allene. In recent years, a number of studies have focused on alternative substrates as probes for the number and nature of sites of substrate interaction on nitrogenase and the types of intermediates that might be formed during N<sub>2</sub> reduction. This paper describes recent studies on the interaction of methyl isocyanide with the purified component proteins of Azotobacter vinelandii nitrogenase.

Methyl isocyanide reduction was first demonstrated by Kelly et al. (1967). Using crude extracts of the N<sub>2</sub>-fixing organism Azotobacter chroococcum (Ac), they showed that CH<sub>3</sub>NC was reduced by six electrons to give methane plus methylamine as products. Like N<sub>2</sub> fixation, the reaction required MgATP and a reductant and was inhibited by carbon monoxide. CH<sub>3</sub>NC reduction was later shown to be a general property of N<sub>2</sub>-fixing organisms [e.g., Hardy & Jackson (1967), Kelly (1968), Munson & Burris (1969), and Biggins & Postgate (1969)].

Kelly et al. (1967) examined CH<sub>3</sub>NC reduction in D<sub>2</sub>O and demonstrated that all methane appeared as CD<sub>4</sub> and thus arose from the isocyanide carbon. They therefore suggested CH<sub>3</sub>NC bound end-on to nitrogenase through the terminal carbon atom rather than the nitrogen atom. An interesting aspect of CH<sub>3</sub>NC reduction by nitrogenase is that the C<sub>2</sub> products,

ethylene and ethane, are formed (Kelly et al., 1967; Hardy & Jackson, 1967; Kelly, 1968). Using  $D_2O$ , Kelly (1968) demonstrated that both carbon atoms in the  $C_2$  products arose from the isocyanide carbon. Although it was originally suggested that the  $C_2$  products were formed by reaction of two enzyme-bound  $C_1$  radicals (Kelly et al., 1967), further experimentation (Kelly, 1968; Hardy & Jackson, 1967) and kinetic analysis (Hardy, 1979) showed that  $C_2$  product formation was dependent upon both  $CH_4$  formation and the free  $CH_3NC$  concentration. On the basis of this information, Hardy (1979) suggested a reduction followed by an insertion mechanism whereby  $C_2$  products are formed by interaction of a single bound  $C_1$  radical with a free molecule of  $CH_3NC$ .

Using Ac crude extracts, Kelly et al. (1967) observed that although carbon monoxide (0.1 atm) inhibited  $CH_3NC$  reduction to methane by 90%, it actually stimulated  $C_2H_4$  formation and decreased  $C_2H_6$  formation by only 50%. When the experiments were repeated with partially purified component proteins of nitrogenase, Kelly (1969a) observed that carbon monoxide inhibited methane and ethane production to the same extent but had little effect on ethylene production. He interpreted these results in terms of two different mechanisms for the formation of ethylene and ethane. Observations of CO stimulation of  $C_2$  product formation were later interpreted (Hardy, 1979) as an indication that CO might be inserted to form  $C_2$  products. The  $C_3$  products propylene and propane were also formed during  $CH_3NC$  reduction (Kelly, 1968; Hardy, 1979), albeit in very small amounts.

Methyl isocyanide concentration dependence experiments were complicated by the observation that the rate of methane formation began to decrease above 5 mM CH<sub>3</sub>NC (Kelly, 1968; Hwang & Burris, 1972). Total electron flow was not measured so it was not clear if the decrease in methane formation was being offset by an increase in hydrogen evolution or if total electron flow was being inhibited (Hwang & Burris, 1972). Reported  $K_m$  values for CH<sub>3</sub>NC reduction by nitrogenase range from 0.18 mM for Ac (Kelly, 1968) to 1.96

<sup>†</sup>From the Charles F. Kettering Research Laboratory, Yellow Springs, Ohio 45387. Received May 26, 1983. This is Contribution No. 816. This study was supported by Projects 79-59-2394-01-383-1 and 82-CRCR-1-1029 from SEA/CGO of the U.S. Department of Agriculture.

 $<sup>^{\</sup>rm I}$  Abbreviations: MgATP, magnesium adenosine 5'-triphosphate; ATP, adenosine 5'-triphosphate; Tes, 2-[[tris(hydroxymethyl)methyl]-amino]ethanesulfonic acid; HPLC, high-performance liquid chromatography; EDTA, ethylenediaminetetraacetic acid; NBD-Cl, 7-chloro-4-nitro-2,1,3-benzoxadiazole;  $N_2$ ase, nitrogenase.

mM for A. vinelandii (Av) nitrogenase (Hwang & Burris, 1972). There are conflicting reports on the effect of CH<sub>3</sub>NC on MgATP hydrolysis by nitrogenase. With Ac, it was reported (Kelly et al., 1967; Kelly, 1968) that CH<sub>3</sub>NC had no effect on the rate of MgATP hydrolysis up to 5 mM and decreased the rate at higher concentrations. With Av (Hwang & Burris, 1972; Hwang et al., 1973), CH<sub>3</sub>NC stimulated the rate of MgATP hydrolysis up to 10 mM with decreased enhancement at higher concentrations.

Kelly (1969a) studied the effect of changing the molar ratio of the Fe protein (Ac2) to the MoFe protein (Ac1) and found that CH<sub>3</sub>NC reduction was maximized at a lower Ac2/Ac1 ratio than was N<sub>2</sub> fixation. This result was also obtained for Klebsiella pneumoniae (Kp) and Bacillus polymyxa (Kelly, 1969b) and interpreted as evidence against CH<sub>3</sub>NC being a good model substrate for N<sub>2</sub> fixation.

Conflicting reports have appeared on the effects of other nitrogenase substrates and inhibitors on CH<sub>3</sub>NC reduction. Kelly (1968) reported that N<sub>2</sub> and H<sub>2</sub> were both competitive inhibitors of CH<sub>3</sub>NC reduction, whereas Hwang et al. (1973) observed that H<sub>2</sub> did not inhibit CH<sub>3</sub>NC reduction. The latter investigators also reported that CH<sub>3</sub>NC was a competitive inhibitor of azide reduction and suggested that azide, cyanide, and methyl isocyanide all bound to the same site on nitrogenase, which is distinct from the N<sub>2</sub> reduction site. Further studies probing methyl isocyanide reduction with the purified component proteins of Av nitrogenase are presented here.

# Materials and Methods

Reagents and Chemicals. ATP, creatine phosphokinase, and Tes were obtained from Sigma Chemical Co.; NaN<sub>3</sub> was from MCB. o-Phthalaldehyde was from Aldrich Chemical Co. CH<sub>3</sub>NC was prepared by a published procedure (Reisburg & Olson, 1980) and stored in a freezer (-20 °C) under argon. It was redistilled after several months as a precautionary measure even though we could detect no evidence of decomposition. K<sub>2</sub>CO<sub>3</sub> and KHCO<sub>3</sub> were MCB reagents (0.001% N). Creatine phosphate was prepared according to a published procedure (Li et al., 1982) or was from Sigma. High-purity H<sub>2</sub>, C<sub>2</sub>H<sub>2</sub>, and Ar were from AGA Burdox; N<sub>2</sub>O and zerograde N<sub>2</sub> were purchased from Matheson.

Nitrogenase Assay. A. vinelandii MoFe and Fe proteins, designated Av1 and Av2, respectively, were purified and analyzed as described elsewhere (Burgess et al., 1980). Specific activities of the proteins were ca. 1900 nmol of  $H_2$  min<sup>-1</sup> (mg of Av2)<sup>-1</sup> and 2900 nmol of  $H_2$  min<sup>-1</sup> (mg of Av1)<sup>-1</sup>. Unless otherwise indicated, all assays were performed at 30 °C in 9.5-mL calibrated hypovials (Pierce Chemical Co.), fitted with butyl rubber serum caps, containing Ar. The 1.0-mL reaction mixture contained 30 mM Tes-KOH, pH 7.3, 2.5 mM ATP, 5.0 mM MgCl<sub>2</sub>, 30 mM creatine phosphate, 5-10 mM neutralized  $Na_2S_2O_4$ , and 2.5 units of creatine phosphokinase.

The vessel containing the reaction mixture was degassed and filled with the appropriate gas mixture on a previously described apparatus (Corbin, 1978),  $Na_2S_2O_4$  was added, and the mixture was incubated at 30 °C for 5 min.  $CH_3NC$  was added where appropriate, followed by Av1, and the reaction was started by adding Av2 to give the appropriate molar ratio of the two components. A total of 1 mg of protein per 1-mL reaction was used to avoid complications introduced by large protein concentrations (Wherland et al., 1981). Unless otherwise indicated, all experiments were performed at an Av2/Av1 molar ratio of 8. Molar ratios are based on molecular weights of 64 000 for Av2 and 230 000 for Av1. Molar ratio experiments were performed as described elsewhere (Wherland et al., 1981). For assays involving  $NaN_3$ , a 0.2

M stock solution was used, and the NaN<sub>3</sub> was added prior to degassing. Unless otherwise indicated, all reactions were run for 5 min, and all product formation was linear with time. Unless otherwise indicated, reactions were terminated with 0.1 mL of 1.5 M K<sub>2</sub>CO<sub>3</sub>/KHCO<sub>3</sub>, pH 9.5, because of CH<sub>3</sub>NC lability (see CH<sub>3</sub>NH<sub>2</sub> determination). Reactions were terminated with 0.1 mL of 37% HCHO when dithionite was to be determined. When ammonia was to be determined, reactions were terminated with 0.4 M EDTA, pH 7.4 (0.1 mL). All termination methods were equally effective.

Preparation of  $CH_3NC$  Stock Solution. A total of 21.7  $\mu$ L of the pure  $CH_3NC$  (0.4  $\mu$ mol) was added to 4.0 mL of cold, degassed buffer and kept on ice. The solution was freshly prepared each day and used directly for high-concentration experiments or diluted appropriately when lower concentrations were desired.

Product Analysis. With the exception of dithionite-utilization studies (see below), all products were measured on the same reaction vial. All data points represent means of (typically) triplicate determinations (see paragraph at end of paper regarding supplementary material). Gas samples, 200 µL at bottle pressure, were taken with a pressure-lock syringe (Precision Sampling). Hydrocarbons were analyzed by using a Hewlett-Packard 5750 gas chromatograph equipped with a H<sub>2</sub> flame detector (Porapak N column, He). H<sub>2</sub> was detected by using a home-built gas chromatograph with a thermal conductivity detector (molecular-sieve 5-Å column, Ar). Attempts to measure  $C_3H_6$  and  $C_3H_8$  used a 13-Å molecular sieve at 150 °C. Measurements of C<sub>2</sub>H<sub>4</sub> and C<sub>2</sub>H<sub>6</sub> in the presence of CO were complicated by trace amounts of the C<sub>2</sub> compounds being present in the CO. To correct for this, we ran controls in triplicate with the appropriate concentrations of CO, with the complete nitrogenase system, but in the absence of CH<sub>3</sub>NC to obtain background values. Phosphate was determined by use of a published procedure (Fiske & Subbarow, 1925).

Methylamine. The determination of methylamine was complicated by the lability of CH<sub>3</sub>NC in acid solution, which leads to more of the amine by hydrolysis. More than a few minutes at pH 5-6 is sufficient to produce methylamine in amounts larger than that formed enzymatically. Fortunately, CH<sub>3</sub>NC is stable in alkaline solution (Sidgwick, 1937). Rather than use our previous method for CH<sub>3</sub>NH<sub>2</sub> (Li et al., 1982), which although sensitive, involved an acidic iodate treatment to remove dithionite, as well as a laborious derivatization and extraction procedure, we looked for a more direct method.

Primary amino acids react with borate-buffered mercaptoethanol-o-phthalaldehyde reagent (OPT) to form highly fluorescent products (Roth, 1971), which are suited for HPLC work (Lindroth & Mopper, 1979). For CH<sub>3</sub>NH<sub>2</sub>, we found that while a blue fluorescent product formed rapidly, the intensity of the fluorescence faded with time. However, the stability improved considerably when one worked at 0 °C, although fading still occurred. The reaction was not affected by CH<sub>3</sub>NC, dithionite, or any other components of the enzyme assay. Thus, a sample could be mixed with the OPT reagent and, after a short reaction time, injected directly for HPLC analysis. It was very sensitive, and reproducibility was assured by using exact reaction times.

A Waters 244 instrument (U6K injector, 6000A pump) and Model 440 (absorbance) or 420-AC (fluorescence) detector were used. The column was a  $\mu$ Bondapak C<sub>18</sub> (3.9 × 30 cm). For the preparation of the OPT reagent, mercaptoethanol (0.20 mL) was added to a solution of o-phthaldehyde (270 mg), and then, 45 mL of 0.1 N sodium borate buffer (pH 9.5) was

added. It gave reproducible results after about 1 h for  $CH_3NH_2$  rather than the 24 h suggested for "aged" reagent (Lindroth & Mopper, 1979). It was stable for several days in a Hypovial under argon. The sample to be analyzed (50  $\mu$ L) was mixed with OPT reagent (0.50 mL) that had been prechilled in an ice bath. After exactly 2 min in ice, a 10- $\mu$ L sample was analyzed by HPLC (1.5 mL/min, 65:35 methanol-0.05 M pH 5 sodium citrate, 338/425-nm excitation/emission filters). The peak corresponding to  $CH_3NH_2$  emerged in ca. 5 min. Response was linear to at least 0.75 mM  $CH_3NH_2$  in the original enzyme assay solution. The background level was ca. 0.004 mM.

We have since found that a small  $C_{18}$  guard column (Bio-Rad Bio-Sil ODS 5S) works very well for this analysis, allowing it to be completed in ca. 1 min. For this, the solvent is 55:45 methanol-0.05 M pH 5.0 sodium citrate at 1.8 mL/min. We have also observed that the derivatization reaction can be done at pH 7.3 as well as 9.5.

Dimethylamine. We looked for dimethylamine by HPLC with the dansyl and dabsyl (Li et al., 1982) techniques. Some was always detected, but quantitation was impossible because of the high background levels of dimethylamine arising from decomposition of the reagents (Seiler, 1970) (both reagents possess dimethylamino groups). NBD-Cl reagent (Van Hoof & Heyndrickx, 1974) also showed (HPLC) dimethylamine present, but was affected by the presence of dithionite and/or sulfite.

Reasonable quantitation was finally achieved by modifying the copper dithiocarbamate method (Karwelk & Meyers, 1979) and by using HPLC. No interference by methylamine (1 mM), methyl isocyanide, dithionite, or any other components of the enzyme assay mixture was evident. The reagent consisted of 0.25 M copper nitrate in 0.5 M NH<sub>4</sub>OH-HCl, pH 9.5, and the extraction solvent was 2% CS<sub>2</sub> in CHCl<sub>3</sub>. The sample to be analyzed (0.40 mL), reagent (0.75 mL), and solvent (1.0 mL) were shaken (4-mL screw-capped vials with Teflon cap liners) on a Burrell Model 75 wrist-action shaker for 1 h. After a brief centrifugation (clinical centrifuge) to separate the phases,  $10 \mu L$  of the lower (CHCl<sub>3</sub>) phase was analyzed by HPLC (1.4 mL/min, CHCl<sub>3</sub>, 436-nm filter). The peak emerged in ca. 2 min.

Ammonia. Ammonia was determined by fluorescence, with a method similar to that of Taylor et al. (1974) but that uses HPLC. It is rapid (no microdiffusion step needed) and very sensitive. Details of this new procedure will appear elsewhere.

Dithionite Determination. In these experiments,  $H_2$ ,  $CH_4$ ,  $C_2H_4$ , and  $C_2H_6$  production and  $S_2O_4^{2-}$  utilization were measured on the same reaction vial. Dithionite was determined by using a published procedure (Li et al., 1982). The accuracy was enhanced by using a dithionite level such that one-fifth to one-third was consumed in the reaction. That amount was  $10 \text{ mM Na}_2S_2O_4$  at  $CH_3NC$  concentrations below 0.3 mM  $CH_3NC$  and 5 mM at higher concentrations.

Data Treatment. Calculation of the total amounts of  $H_2$ ,  $CH_4$ ,  $C_2H_4$ , and  $C_2H_6$  was based on the calibrated vial volume minus 1.1 mL of liquid phase and then expressed as nanomoles per minute per milligram of total protein. No correction for solubility of the gases in the liquid phase was applied. Total electron flow was obtained either by the amount of dithionite consumed or by the amounts of products formed. Dithionite consumption was determined in the reaction mixture from that found in a control reaction where Av2 was added after termination with HCHO. The relationships two electrons/ $H_2$ , six electrons/ $(CH_4 + CH_3NH_2)$ , four electrons/ $CH_3NHCH_3$ , and two electrons/excess  $CH_3NH_2$  are used in calculating

| Table I: | Product/Electron Balance     |                                  |                                        |                      |                             |  |
|----------|------------------------------|----------------------------------|----------------------------------------|----------------------|-----------------------------|--|
|          | products (nmol) <sup>a</sup> |                                  |                                        | electron<br>pairs as | nmol of                     |  |
|          | CH <sub>4</sub>              | CH <sub>3</sub> -NH <sub>2</sub> | CH <sub>3</sub> -<br>NHCH <sub>3</sub> | products (nmol) b    | $S_2O_4^{2^-}$ consumed $c$ |  |
| 229      | 172                          | 207                              | 27                                     | 833 ± 35             | 785 ± 70                    |  |

<sup>a</sup> The following conditions were used: 2.5 mM CH<sub>3</sub>NC, Ar atmosphere, 5-min reactions, average of six reactions. <sup>b</sup> Assuming two electrons for excess CH<sub>3</sub>NH<sub>2</sub>. If six electrons are given to excess CH<sub>3</sub>NH<sub>4</sub>, it would be 904. <sup>c</sup> By titration (Li et al., 1982).

electron flow from the products formed.

Phenanthroline Method. To examine the effects of bathophenanthrolinesulfonate on Av2, we used the method of Blair & Diehl (1961), as modified for the nitrogenase system by Liones & Burris (1978a,b).

#### Results

Reduction Products of CH<sub>3</sub>NC. Electron Balance. Using highly purified component proteins, we have confirmed the findings of Kelly et al. (1967) that most of the CH<sub>3</sub>NC is reduced (by six electrons) to give CH<sub>4</sub> and CH<sub>3</sub>NH<sub>2</sub>. We have also identified a previously unrecognized, four-electron product, CH<sub>3</sub>NHCH<sub>3</sub>. The ratio of CH<sub>3</sub>NHCH<sub>3</sub> to CH<sub>4</sub> is constant at  $0.16 \pm 0.02$ , regardless of substrate concentration at Av2/Av1 = 8.

Table I gives a typical balance of products and electrons and shows that the CH<sub>3</sub>NH<sub>2</sub>/CH<sub>4</sub> ratio is greater than the anticipated 1:1. By analogy to the finding of excess NH<sub>3</sub> over CH<sub>4</sub> in the HCN reduction system (Li et al., 1982), it seemed to us that this CH<sub>3</sub>NH<sub>2</sub> could arise by hydrolysis of a twoelectron intermediate and that HCHO was likely to be the missing carbonaceous product. Unfortunately, HCHO cannot be successfully quantitated at these levels in N<sub>2</sub>ase assays (Li et al., 1982). The data in Table I are consistent with the excess CH<sub>3</sub>NH<sub>2</sub> being produced by a two-electron pathway, although the argument here is less definitive than for the HCN system (Li et al., 1982). The data are not inconsistent with a two-step hydrolysis reaction, catalyzed by the *complete* N<sub>2</sub>ase system, whereby CH<sub>3</sub>NC is first hydrolyzed to N-methylformamide and then to  $CH_1NH_2 + HCO_2H$ . Surprisingly, the  $CH_1NH_2$ to CH<sub>4</sub> ratio varies with substrate concentration (see below).

Hydrogen (in variable amounts) is formed concurrently as a two-electron product. The formation of all CH<sub>3</sub>NC reduction products is dependent on the presence of MgATP, dithionite, and both component proteins.

The data in Table I clearly show the equivalence of products formed to electrons consumed, and thus all major products are accounted for. Ethylene and ethane, products of CH<sub>3</sub>NC reduction (Kelly et al., 1967), were detected in very small, variable amounts (see below). These products are insignificant with respect to electron-product balance and also cannot account for the excess CH<sub>3</sub>NH<sub>2</sub>. Propylene and propane have been reported as products of CH<sub>3</sub>NC reduction (Kelly, 1968). We were unable to detect these products above background levels in any of our assays (see Materials and Methods).

 $CH_3NC$  Inhibition of Total Electron Flow. Nitrogenase turnover has been reported to be essentially independent of the substrate being reduced [e.g., Watt & Burns (1977)]. However, Figure 1 shows a plot of the rate of total electron flow through nitrogenase as a function of  $CH_3NC$  concentration and demonstrates that the substrate  $CH_3NC$  is a potent inhibitor of total electron flow. A Dixon plot of the data in Figure 1 is linear (see Figure 1 of supplementary material) and gives an apparent  $K_i$  of  $158 \pm 6 \,\mu\text{M}$   $CH_3NC$ . That the

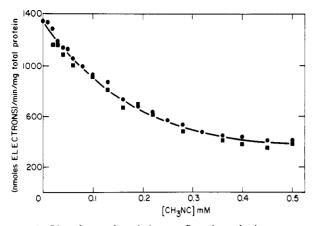



FIGURE 1: Plot of rate of total electron flow through nitrogenase vs.  $CH_3NC$  concentration: ( $\bullet$ ) nmol of electrons  $min^{-1}$  (mg of total protein)<sup>-1</sup> calculated from relationship  $2H_2 + 6CH_4 + 4CH_3NHCH_3$  vs.  $[CH_3NC]$  in mM; ( $\blacksquare$ ) 2(nmol of dithionite consumed)  $min^{-1}$  (mg of total protein)<sup>-1</sup>. Assay conditions and calculations are as described under Materials and Methods.

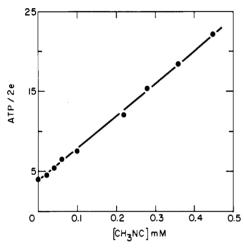



FIGURE 2: Plot showing how many MgATPs are hydrolyzed to get an electron pair transferred through nitrogenase to substrate vs. [CH<sub>3</sub>NC]. Assay conditions and calculations are as described under Materials and Methods.

observed inhibition involved nitrogenase and not the ATP-generating system was demonstrated by increasing the creatine phosphate, creatine phosphokinase, and MgATP concentrations 3-fold with no resultant increase in electron flow (2.5 mM CH<sub>3</sub>NC).

 $CH_3NC$  Uncouples MgATP Hydrolysis and Electron Transfer. We have previously demonstrated that CN<sup>-</sup> is an inhibitor of total electron flow (Li et al., 1982). The finding that CN<sup>-</sup> also uncouples MgATP hydrolysis and electron transfer (Li et al., 1982) necessitated testing CH<sub>3</sub>NC for its effect on the ATP/two electron ratio. Figure 2 is a plot of the number of MgATPs hydrolyzed for every electron pair consumed by nitrogenase. The data show that like CN<sup>-</sup>, CH<sub>3</sub>NC causes a dramatic increase in the MgATP/two electron ratio that is equivalent to a decrease in the efficiency of electron transfer through nitrogenase. It should be noted that, while the rate of electron flow through nitrogenase decreases (Figure 1), the rate of MgATP hydrolysis remains fairly constant with increasing CH<sub>3</sub>NC at 3024  $\pm$  241 nmol of P<sub>i</sub> min<sup>-1</sup> (mg of total protein)<sup>-1</sup>.

Reversibility of CH<sub>3</sub>NC Inhibition. Because CN<sup>-</sup> inhibition of total electron flow through nitrogenase could be reversed by CO (Li et al., 1982), we tested the effect of CO on CH<sub>3</sub>NC inhibition. Figure 3 is a plot of electron flow through nitrogenase as a function of CO concentration. The data dem-

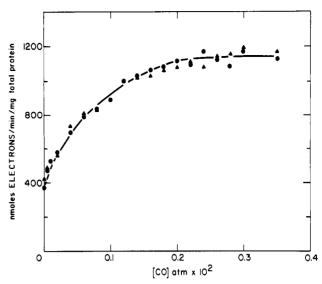



FIGURE 3: CO relief of  $CH_3NC$  inhibition: ( $\bullet$ ) nmol of electrons min<sup>-1</sup> (mg of total protein)<sup>-1</sup> calculated from relationship  $2H_2 + 6CH_4 + 4CH_3NHCH_3$  vs. [CO] in atm; ( $\blacktriangle$ ) 2(nmol of dithionite consumed) min<sup>-1</sup> (mg of total protein)<sup>-1</sup>. All with 0.4 mM  $CH_3NC$ . Controls with no  $CH_3NC$  present under 1 atm of Ar gave the same electron flow as experimental reactions under 1 atm of CO with 0.4 mM  $CH_3NC$  present [1300  $\pm$  44 nmol of electrons min<sup>-1</sup> (mg of total protein)<sup>-1</sup>].

Table II: Effect of Various Substrates and Inhibitors on Electron Flow in the Presence of CH<sub>3</sub>NC

| gas phase <sup>a</sup>                      | [(nmol of electrons)/2]<br>min <sup>-1</sup> (mg of<br>total protein) <sup>-1</sup> b |
|---------------------------------------------|---------------------------------------------------------------------------------------|
| Ar                                          | 195 ± 20                                                                              |
| $H_2$                                       | $195 \pm 21$                                                                          |
| $N_2O$                                      | 319 ± 19                                                                              |
| $ \begin{array}{c} N_2O\\ N_2 \end{array} $ | $354 \pm 26$                                                                          |
| $Ar + 10 \text{ mM NaN}_3$                  | $348 \pm 29$                                                                          |
| $C_2H_2$                                    | $440 \pm 42$                                                                          |
| co -                                        | 662 ± 24                                                                              |

<sup>a</sup> All at 1 atm except  $C_2H_2$  (0.5 atm) with 0.4 mM  $CH_3NC$  (~2.5 $K_1$ ). <sup>b</sup>  $S_2O_4$  <sup>2-</sup> utilization, sextuplicate.

onstrate that the majority of the observed CH<sub>3</sub>NC inhibition does not represent irreversible damage to nitrogenase because it can be reversed by CO. Figure 3 shows that in the presence of 0.4 mM CH<sub>3</sub>NC, total electron flow is almost completely counteracted by 0.002-0.003 atm of CO to give electron flow nearly that expected in the absence of CH<sub>3</sub>NC. Even if nitrogenase is allowed to turn over for 2 min under argon at 0.4 mM CH<sub>3</sub>NC and then the atmosphere is switched to CO, total electron flow recovers at  $1200 \pm 22$  nmol of electron min<sup>-1</sup> (mg of total protein)<sup>-1</sup>. CO relieves not only inhibition of total electron flow but also the effect on the ATP/two electron ratio. An ATP/two electron ratio of  $4.02 \pm 0.05$  is obtained at 0.4 mM CH<sub>3</sub>NC with 1 atm of CO present, in good agreement with the zero CH<sub>3</sub>NC value shown in Figure 2. Surprisingly, as shown in Table II, a number of other nitrogenase substrates ( $C_2H_2 > N_2 \simeq azide > N_2O$ ) partially relieve CH<sub>3</sub>NC inhibition of total electron flow. Only the nitrogenase inhibitor H2 had no effect on total electron flow in the presence of CH<sub>1</sub>NC.

In order to determine if  $CH_3NC$  had a differential effect on Av1 or Av2, experiments were performed where Av2 alone, Av1 alone, or the MgATP-generating system were preincubated with 0.4 mM  $CH_3NC$  for 15 min. Then, either the reaction was started by adding the appropriate components or the atmosphere was switched to CO (1 atm) and then the

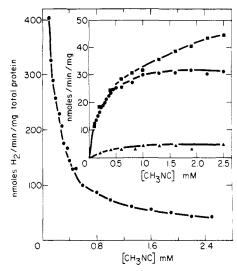



FIGURE 4: Plot of rate of  $H_2$  evolution ( $\bullet$ ) in nmol min<sup>-1</sup> (mg of total protein)<sup>-1</sup> vs. [CH<sub>3</sub>NC] in mM. Inset is plot of rates of CH<sub>4</sub> ( $\bullet$ ), CH<sub>3</sub>NH<sub>2</sub> ( $\bullet$ ), and CH<sub>3</sub>NHCH<sub>3</sub> ( $\Delta$ ) formation, all in nmol min<sup>-1</sup> (mg of total protein)<sup>-1</sup> vs. [CH<sub>3</sub>NC] in mM.

reaction was started. Electron flow was unaffected by all preincubation, before or after switching to CO. Thus, this experiment was uninformative. We also monitored changes in the reactivity of the Fe<sub>4</sub>S<sub>4</sub> center in Av2 toward bathophenanthrolinesulfonate before and after addition of MgATP by using the method of Ljones & Burris (1978b). There was no difference in this reaction when Av2 was preincubated with 2 mM CH<sub>3</sub>NC for 30 min, when compared to preincubation of Av2 in the absence of CH<sub>3</sub>NC. We may have some evidence for slow irreversible damage to nitrogenase by high concentrations of CH<sub>3</sub>NC because the rate of total electron flow through the enzyme decreases with time (ca. 15% in 5 min) at concentrations of substrate above about 1.8 mM. The small changes in electron flow did not affect product distribution and no corrections were applied for this observation.

CH<sub>3</sub>NC as Substrate. Figure 4 shows all of the major products of nitrogenase turnover as a function of the CH<sub>3</sub>NC concentration. As expected, the rates of formation of all CH<sub>3</sub>NC reduction products increase with increasing substrate concentration with a concomitant decrease in the rate of H<sub>2</sub> evolution (Figure 4). Although the rate of CH<sub>4</sub> and CH<sub>3</sub>N-HCH<sub>3</sub> formation parallel each other, the rate of CH<sub>3</sub>NH<sub>2</sub> formation follows a different curve. In a number of experiments, we find that the ratio of CH<sub>3</sub>NH<sub>2</sub> to CH<sub>4</sub> is about 1:1 at CH<sub>3</sub>NC concentrations below 1 mM. However, at substrate concentrations above 1 mM, the rate of CH<sub>4</sub> formation levels off while the rate of CH<sub>3</sub>NH<sub>2</sub> formation continues to increase. All three products begin to decrease in the range 5-10 mM CH<sub>3</sub>NC due to a dramatic decrease in total electron flow.

Previous attempts to determine a  $K_{\rm m}$  for CH<sub>3</sub>NC reduction relied on the rate of CH<sub>4</sub> formation only and did not consider the inhibition of total electron flow described above. As is shown in the inset to Figure 4, the rate of CH<sub>4</sub> formation does not follow Michaelis-Menten saturation kinetics. CH<sub>4</sub> formation appears to level off at about 1 mM CH<sub>3</sub>NC and actually decreases at concentrations above 2.5 mM. This phenomenon has been termed substrate self-inhibition but is actually an artifact caused by CH<sub>3</sub>NC inhibition of total electron flow. A better way to treat the data is to plot the percentage of total electrons being used to reduce CH<sub>3</sub>NC vs. the substrate concentration. A second problem in determining the  $K_{\rm m}$  is that at low CH<sub>3</sub>NC a large proportion of the substrate is being consumed in our 5-min reactions. For example, at a 0.16 mM initial CH<sub>3</sub>NC concentration, 57% of the substrate is consumed

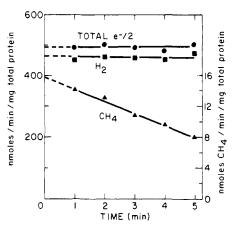



FIGURE 5: Plots of rates of electron pair consumption ( $\bullet$ ),  $H_2$  evolution ( $\bullet$ ), and  $CH_4$  production ( $\blacktriangle$ ), all in nmol min<sup>-1</sup> (mg of total protein)<sup>-1</sup> vs. time in min. Assays in the presence of 0.08 mM  $CH_3NC$ .

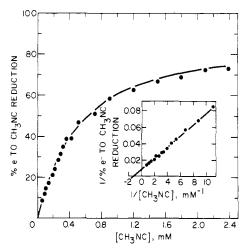
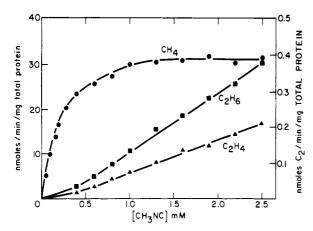


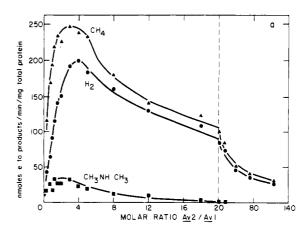

FIGURE 6: Plot of percentage of total electrons being used to produce CH<sub>4</sub>, CH<sub>3</sub>NH<sub>2</sub>, and CH<sub>3</sub>NHCH<sub>3</sub> vs. calculated CH<sub>3</sub>NC concentration. CH<sub>3</sub>NC concentration is taken as ([CH<sub>3</sub>NC]<sub>initial</sub> + [CH<sub>3</sub>NC]<sub>final</sub>)/2. Inset is double-reciprocal plot with CH<sub>3</sub>NC concentration in the range  $(0.2-2)K_m$  (Segel, 1975). The line is a computer fit to the Michaelis-Menten equation.  $K_m = 0.688 \pm 0.016$  mM CH<sub>3</sub>NC;  $V_{max} = 103.5 \pm 6.7\%$ . Assay conditions and calculations are as described under Materials and Methods.

in 5 min, while at 1.9 mM, only 12% is used. This problem is illustrated in Figure 5, which shows that at low  $CH_3NC$  concentrations its reduction decreased dramatically with time. A more realistic approach is to use the average  $CH_3NC$  concentration [(initial + final)/2] instead of the initial  $CH_3NC$  concentration (shown in Figure 6). If all data points in the  $CH_3NC$  concentration range (0.2-2)  $K_m$  are used, the data fit Michaelis-Menten kinetics, and an apparent  $K_m$  of 0.688  $\pm$  0.016 mM  $CH_3NC$  is obtained (Figure 6 inset). The y intercept indicates that at infinite  $CH_3NC$ , 100% of the electrons will be used to reduce  $CH_3NC$  (i.e.,  $H_2$  evolution will be eliminated). At 10 mM  $CH_3NC$  we actually measure 86% of the electrons going to  $CH_3NC$  reduction.

 $C_2$  Product Formation. Figure 7 shows that the rates of formation of the  $C_2$  products do not follow saturation behavior. For both  $C_2H_4$  and  $C_2H_6$ , their rates of formation appear second order in  $CH_3NC$  at low substrate concentrations. At higher concentrations, when the rate of formation of the  $C_1$  product  $(CH_4)$  is saturated, the rates of formation of  $C_2H_4$  and  $C_2H_6$  become linear or first order in  $[CH_3NC]$ . These data are fit to the following general kinetic equation (Hardy, 1979):

rate of  $C_2$  product formation =  $k(\text{rate of } C_1 \text{ product formation})[CH_3NC]$  (1)





FIGURE 7: Plot of rates of formation of  $C_1$  and  $C_2$  products:  $(\bullet)$   $CH_4$ ,  $(\blacksquare)$   $C_2H_6$ , and  $(\blacktriangle)$   $C_2H_4$ , all in nmol min<sup>-1</sup> (mg of total protein)<sup>-1</sup> vs.  $[CH_3NC]$  in mM.

Treating our data in this way, we obtain constant values of  $k(C_2H_6) = 5.03 \pm 0.34 \, M^{-1}$  and  $k(C_2H_4) = 2.67 \pm 0.19 \, M^{-1}$  for all CH<sub>3</sub>NC concentrations in the range 0.2-to 10 mM. The amounts of  $C_2H_4$  and  $C_2H_6$  formed below 0.2 mM CH<sub>3</sub>NC were below our level of detectability. It should be emphasized that  $C_2H_4$  and  $C_2H_6$  formations do not account for the majority of the observed excess CH<sub>3</sub>NH<sub>2</sub>. At 2.5 mM CH<sub>3</sub>NC, the  $C_2$  products only account for 10% of the excess CH<sub>3</sub>NH<sub>2</sub>.

Previous reports have suggested that CO stimulates the rate of  $C_2$  product formation (Kelly, 1969a; Hardy, 1979). In contrast to these reports, we find that CO (0.05–10%) decreases the rates of formation of CH<sub>4</sub>,  $C_2H_4$ , and  $C_2H_6$  concomitantly, such that  $k(C_2H_4)$  and  $k(C_2H_6)$  are unaffected by the presence of CO.

Component Ratio Titration. Figure 8 shows the rate of product formation vs. the molar component ratio of Av2 to Av1. In this experiment,  $CH_3NC$  reduction to  $CH_4$  +  $CH_3NH_2$  peaks at a ratio of about 3 as does formation of  $C_2H_4$  and  $C_2H_6$ .  $CH_3NC$  reduction to  $CH_3NHCH_3$  peaks at a ratio of about 2 while  $H_2$  evolution peaks at a ratio of about 4. This trend is different from that seen in previous experiments for  $H_2$  evolution,  $N_2$  fixation, and HD formation where all products peak at the same ratio (Wherland et al., 1981) while similar to the HCN reduction system (Li et al., 1982).

Previous studies (Silverstein & Bulen, 1970; Davis et al., 1975) with nitrogenase have demonstrated that, in general, H<sub>2</sub> evolution is favored over other substrate reductions (especially N<sub>2</sub>) at low Fe/MoFe protein molar ratios where the system is electron limited. For N<sub>2</sub> reduction (Wherland et al., 1981), the higher the Av2/Av1 ratio the greater the percentage of total electrons going to N<sub>2</sub> reduction. A different trend is seen for cyanide reduction (Li et al., 1982) and methyl isocyanide reduction (Figure 2a of supplementary material), where high ratios favor H<sub>2</sub> evolution over HCN or CH<sub>3</sub>NC reduction. The trend of high ratios favoring H<sub>2</sub> evolution over substrate reduction has previously been reported for hydrazine reduction (Wherland et al., 1981). Interestingly, the CH<sub>3</sub>NHCH<sub>3</sub>/CH<sub>4</sub> ratio also changes dramatically with the Av2/Av1 ratio. In the Av2/Av1 ratio range 1-30, the CH<sub>3</sub>NHCH<sub>3</sub>/CH<sub>4</sub> ratio decreases from about 0.2 to 0.02. No CH<sub>3</sub>NHCH<sub>3</sub> is detected at higher ratios. With 1 mM CH<sub>3</sub>NC present, the  $CH_3NH_2/CH_4$  ratio is  $0.98 \pm 0.08$  with no trend seen with changes in Av2/Av1. Because excess CH<sub>3</sub>NH<sub>2</sub> over CH<sub>4</sub> is only observed at higher substrate concentrations, a component ratio titration experiment was performed at 2.5 mM CH<sub>3</sub>NC. Again, no trend was observed with the  $CH_3NH_2/CH_4$  ratio being 1.25 ± 0.07 regardless of the



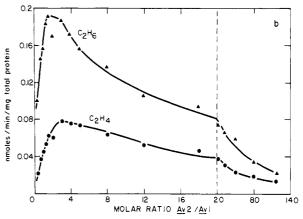



FIGURE 8: Plot of nmol of electrons to products  $\min^{-1}$  (mg of total protein)<sup>-1</sup> vs. the molar component ratio Av2/Av1. (a) ( $\triangle$ ) 6 CH<sub>4</sub>, ( $\bigcirc$ ) 2 H<sub>2</sub>, and ( $\bigcirc$ ) 4 CH<sub>3</sub>NHCH<sub>3</sub>. (b) ( $\triangle$ ) C<sub>2</sub>H<sub>6</sub> and ( $\bigcirc$ ) C<sub>2</sub>H<sub>4</sub> as nmol of products. All assays and calculations are as described under Materials and Methods. Assay contained 1 mM CH<sub>3</sub>NC.

Av2/Av1 ratio in the range 1-50.

Total electron flow shows the same smooth variation with component ratio (Figure 2b of supplemental material) as has been seen in all previous experiments (Wherland et al., 1981; Li et al., 1982). If the same data are normalized to Av2 and Av1 protein (Figure 2c of supplemental material), the general shape of these curves is very similar to that from previously reported titrations (Wherland et al., 1981; Li et al., 1982). With CH<sub>3</sub>NC (1 mM) present, total electron flow is decreased, and the specific activities of both component proteins are concomitantly decreased. Av2 specific activity is only 800 [(nmol of electrons)/2] min<sup>-1</sup> (mg of Av2)<sup>-1</sup> (vs. 1950 with no CH<sub>3</sub>NC at Av2/Av1 = 0.7), and Av1 is only 750 [nmol of electron)/2] min<sup>-1</sup> (mg of Av1)<sup>-1</sup> (vs. 2900 with no CH<sub>3</sub>NC at Av2/Av1 = 30).

Effects of Other Substrates and Inhibitors on  $CH_3NC$  Reduction.  $H_2$  is known to be an inhibitor of  $N_2$  fixation. As shown in Table II, the addition of  $H_2$  to a  $CH_3NC$  reduction system has no effect on total electron flow or on the reduction of  $CH_3NC$  to  $CH_4 + CH_3NH_2$  (Table III). As expected, CO inhibits  $CH_3NC$  reduction with a  $K_i$  of  $0.00025 \pm 0.00002$  atm

Trying to determine the effect of  $N_2$ , azide,  $N_2O$ , and  $C_2H_2$  on  $CH_3NC$  reduction is complicated by the fact that all four substrates partially relieve  $CH_3NC$  inhibition of total electron flow. Table III clearly shows that  $N_2$ , azide, and  $C_2H_2$  inhibit  $CH_4$  formation. These inhibitions are in fact much more dramatic if changes in total electron flow are considered and the percentages of total electron flow being used to reduce  $CH_3NC$  in the presence of  $N_2$ , azide, or  $C_2H_2$  are compared to the percentage under Ar (Table III). Similarly,  $N_2O$ , which

Table III: Effect of Various Substrates and Inhibitors on CH<sub>3</sub>NC Reduction (0.4 mM CH<sub>3</sub>NC)

| gas phase <sup>a</sup>     | nmol of CH <sub>4</sub><br>min <sup>-1</sup> (mg of total<br>protein) <sup>-1</sup> | % electrons to CH <sub>3</sub> NC reduction |
|----------------------------|-------------------------------------------------------------------------------------|---------------------------------------------|
| Ar                         | 24.72 ± 1.19                                                                        | 38                                          |
| Н.                         | $27.17 \pm 1.77$                                                                    | 40.8                                        |
| $N_2O$                     | $27.98 \pm 1.27$                                                                    | 26.3                                        |
| N,                         | $19.19 \pm 0.76$                                                                    | 16.3                                        |
| $Ar + 10 \text{ mM NaN}_3$ | $18.80 \pm 2.10$                                                                    | 16.2                                        |
| C, H.                      | $5.96 \pm 0.22$                                                                     | 4.1                                         |
| CO T                       | $0.89 \pm 0.06$                                                                     | 0.4                                         |

 $^{\it a}$  All at 1 atm except  $\rm C_2H_2$  (0.5 atm) with 0.4 mM CH $_{\rm 3}$  NC, sextuplicate.

does not have a noticeable effect on  $CH_4$  formation, does appear to inhibit  $CH_3NC$  reduction when  $N_2O$  relief of  $CH_3NC$  inhibition of total electron flow is considered (Table III). For the experiment in the presence of  $N_2$ , electron balance was achieved by  $NH_3$  formed from  $N_2$  reduction. For  $C_2H_2$ , electron balance was similarly achieved by  $C_2H_4$  formation from  $C_2H_2$  reduction. For azide, electron balance was achieved by  $N_2$ ,  $N_2H_4$ , and  $NH_3$  formation from azide reduction.  $N_2O$  reduction to  $N_2$  was not directly measured but is needed to account for missing electrons.

The effects of  $N_2$  on  $CH_3NC$  reduction were studied further by performing a  $CH_3NC$  concentration dependence (0-1.6 mM) experiment under 1 atm  $N_2$ . The presence of  $N_2$  not only inhibited the rate of  $CH_4$  formation but also greatly stimulated the formation of excess  $CH_3NH_2$  (Figure 3 of supplementary material). It should be noted that more than one  $H_2$  was evolved per  $N_2$  fixed at all  $CH_3NC$  concentrations tested.

#### Discussion

One of the general features of the enzyme nitrogenase is that its turnover rate is essentially independent of the substrate being reduced. This has been demonstrated for the reductions of H<sup>+</sup>, C<sub>2</sub>H<sub>2</sub> and N<sub>2</sub> (Watt & Burns, 1977), azide (Dilworth & Thorneley, 1981), and HCN (Li et al., 1982) and interpreted as strong evidence that the rate-limiting step for nitrogenase turnover occurs prior to substrate reduction. The data presented here show definitively that nitrogenase turnover is *not* strictly independent of the substrate being reduced.

These data demonstrate that one substrate,  $CH_3NC$ , is a potent ( $K_i = 158 \mu M$ ) reversible inhibitor of total electron flow through nitrogenase and, at infinite  $CH_3NC$  concentrations, all electron flow through the enzyme should cease.  $CH_3NC$  seems to be reversibly bound to nitrogenase at an inhibitory site or in an inhibitory mode [called  $CH_3NC$ -(i)] and in rapid equilibrium between free and bound forms. When  $CH_3NC$ -(i) is bound to nitrogenase, all substrate reductions cease. When it is not bound, total electron flow continues and electrons are distributed normally to whatever substrates are available. Previous results showing an inhibition of  $CH_4$  formation by high concentrations of  $CH_3NC$  (Kelly, 1968; Hwang & Burris, 1972) can now be explained in terms of  $CH_3NC$  inhibition of total electron flow rather than as substrate self-inhibition.

To which protein does CH<sub>3</sub>NC-(i) bind? CO, C<sub>2</sub>H<sub>2</sub>, N<sub>2</sub>, azide, and N<sub>2</sub>O can at least partially relieve CH<sub>3</sub>NC inhibition of total electron flow. There is some physical evidence for CO binding to the MoFe protein (Orme-Johnson et al., 1977; Davis, et al., 1979). In addition, the MoFe protein is believed to contain the site(s) of substrate (N<sub>2</sub>, C<sub>2</sub>H<sub>2</sub>, azide, and N<sub>2</sub>O) binding and reduction (Shah et al., 1973; Hageman & Burris, 1979). Our results would therefore strongly suggest that

CH<sub>3</sub>NC-(i) exerts its inhibitory effect by binding to the MoFe protein.

CH<sub>3</sub>NC-(i) not only inhibits total electron flow through nitrogenase but it also makes the enzyme less efficient by uncoupling MgATP hydrolysis and electron transfer to substrate. CO relieves both effects. The simplest explanation for this observation is that CH<sub>3</sub>NC-(i) causes futile cycling of electrons between the two component proteins (Orme-Johnson et al., 1977). This would explain why CH<sub>3</sub>NC-(i) has no apparent differential effect on the specific activities of the two component proteins. Although the inhibitory effects of CH<sub>3</sub>NC-(i) described here and of CN<sup>-</sup> described elsewhere (Li et al., 1982) are quite similar, there are two differences worth noting. The first is that the rate of MgATP hydrolysis is stimulated by CN- (Li et al., 1982) while the rate of MgATP hydrolysis appears to be unaffected by CH<sub>3</sub>NC-(i). The second is that when the other substrates,  $N_2$ , azide,  $N_2O$ , and C<sub>2</sub>H<sub>2</sub>, are added to nitrogenase in the presence of CN  $(\sim 2.5 K_i)$ , only azide partially relieves the inhibition (Li et al., 1982). With CH<sub>3</sub>NC-(i) ( $\sim 2.5 K_i$ ), all substrates partially relieve the inhibition. It is therefore possible that, although the effects of CN<sup>-</sup> and CH<sub>3</sub>NC-(i) are quite similar, they exert their effects on binding to different sites. CO relieves inhibition caused by both, and there is evidence for two CO binding sites on nitrogenase (Davis et al., 1979). Azide, which is present as two species in solution (HN<sub>3</sub> and N<sub>3</sub><sup>-</sup>) also relieves both inhibitions and thus may bind to more than one site on nitrogenase.

Mechanism of CH<sub>3</sub>NC Reduction. In addition to being an inhibitor of nitrogenase, CH<sub>3</sub>NC is also a substrate [called CH<sub>3</sub>NC-(s)]. We demonstrate that nitrogenase catalyzes the following reactions:

$$CH_3NC_{-}(s) + 4e^- + 4H^+ \rightarrow CH_3NHCH_3$$
 (2)

$$CH_3NC_{-}(s) + 6e^- + 6H^+ \rightarrow CH_3NH_2 + CH_4$$
 (3)

At an Av2/Av1 ratio of 8, the stoichiometry of (2) to (3) is 0.16:1. The fact that this stoichiometry is independent of CH<sub>3</sub>NC concentration suggests that (2) and (3) occur in a common pathway at the same site. Changing the Av2/Av1 ratio should influence the rate at which the next two electrons become available, and this should change the distribution of (2) to (3). The effect is, indeed, observed, and it occurs in the expected direction with pathway 2 being favored at low Av2/Av1 ratios and pathway 3 being highly favored at high ratios.

Our data show that at high concentrations of  $CH_3NC$ -(s), the ratio of  $CH_3NH_2$  is greater than the anticipated 1:1. One explanation that is consistent with our electron-balance studies is that the excess  $CH_3NH_2$  is formed by

$$CH_3NC_{-}(s) + 2e^- + 2H^+ \rightarrow CH_3NHCH \xrightarrow{H_2O} HCHO + CH_3NH_2$$
 (4)

This explanation is offered by analogy to the HCN system (Li et al., 1982) although, unlike that system, further support for it was not found in our component ratio titration experiments. If this explanation is correct, then CH<sub>3</sub>NC or N<sub>2</sub> (other substrates were not tested) must be able to displace the proposed two-electron-reduced intermediate, causing its rate of hydrolysis to be accelerated with increasing CH<sub>3</sub>NC or N<sub>2</sub>. This would further mean that the active site must be large enough to accommodate a bound two-electron intermediate and a free, incoming CH<sub>3</sub>NC (or N<sub>2</sub>). A second possibility for the excess CH<sub>3</sub>NH<sub>2</sub> is a two-step hydrolysis reaction whereby CH<sub>3</sub>NC is first hydrolyzed to N-methylformamide and then to CH<sub>3</sub>NH<sub>2</sub> and HCO<sub>2</sub>H. It is difficult to explain,

however, why such a two-step hydrolysis reaction occurs only when the complete turning-over nitrogenase system is present and why it would be stimulated by increasing CH<sub>3</sub>NC or N<sub>2</sub>.

Previous studies (Kelly, 1968) have demonstrated that nitrogenase also catalyzes the following reactions:

$$2CH_3NC^* + 8e^- + 8H^+ \rightarrow **C_2H_4 + 2CH_3NH_2$$
  
 $2CH_3NC^* + 10e^- + 10H^+ \rightarrow **C_2H_6 + 2CH_3NH_2$ 

Our studies of the rates of formation of CH<sub>4</sub>, C<sub>2</sub>H<sub>4</sub>, and C<sub>2</sub>H<sub>6</sub> strongly support the reduction followed by an insertion mechanism proposed by Hardy (1979) and are inconsistent with a mechanism whereby two bound C1 radicals react to form the C<sub>2</sub> products (Kelly et al., 1967). This mechanism (Hardy, 1979) predicts that, during the normal course of the reduction of CH<sub>3</sub>NC-(s) by six electrons, the product CH<sub>3</sub>NH<sub>2</sub> should be released prior to the product CH<sub>4</sub>. It would be of interest to test this prediction by studying pre-steady-state kinetics of the system. The reduction followed by an insertion mechanism also predicts that the active site is large enough to accommodate a bound C<sub>1</sub> radical and an incoming CH<sub>3</sub>NC and the insertion product. Our results show that CO decreases the rates of CH<sub>4</sub>, C<sub>2</sub>H<sub>4</sub>, and C<sub>2</sub>H<sub>6</sub> formation concomitantly and are inconsistent with a CO insertion mechanism (Hardy, 1979). Previous results showing CO stimulation of C<sub>2</sub> product formation (Kelly, 1967 and 1969a) might be attributed to failure to account accurately for contaminating C<sub>2</sub> impurities in CO. We were also unable to confirm the reported formation of C<sub>3</sub> products (Kelly, 1968).

Redox States. It has been suggested that at low ratios of Fe protein to MoFe protein, when electron flux is decreased, the reduction of two-electron substrates is favored over the reduction of six-electron substrates (Silverstein & Bulen, 1970; Davis et al., 1975). Although this is certainly true for competition between N<sub>2</sub> fixation and H<sub>2</sub> evolution [e.g., Wherland et al. (1981)], it does not appear to be true for the competition of other six-electron substrates with H<sub>2</sub> evolution. Our data show that CH<sub>3</sub>NC reduction is maximally favored over H<sub>2</sub> evolution at low Av2/Av1 ratios as has previously been seen for HCN reduction (Li et al., 1982). This phenomenon also appears to be true for the six-electron reduction of azide to  $N_2H_4$  and  $NH_3$  by Kp nitrogenase (Dilworth & Thorneley, 1981). These observations support a mechanism whereby CH<sub>3</sub>NC-(s) is reduced at a redox state of nitrogenase more oxidized than that reactive toward H<sub>2</sub> evolution or N<sub>2</sub> reduction. A recently proposed mechanism (Thorneley & Lowe, 1982) allows for the interaction of various substrates with different redox states of nitrogenase. It will be of interest to fit the CH<sub>3</sub>NC component ratio titration data shown here to that mechanism.

There appear to be two ways in which the six-electron reduction of  $N_2$  differs significantly from the six-electron reductions of other substrates (e.g.,  $CH_3NC$ , HCN, and azide). One, described above, is the effects of changing the component protein ratio on the distribution of electrons between  $H_2$  evolution and the six-electron reduction. The second is that at infinite concentrations of  $CH_3NC$ -(s), HCN (Li et al., 1982), and azide (Dilworth & Thorneley, 1981),  $H_2$  evolution can be eliminated while at infinite concentrations of  $N_2$ ,  $H_2$  evolution continues [e.g., Rivera-Ortiz & Burris (1975)]. It is likely that these two observations are related.

Relationship of Binding Sites. The finding that CH<sub>3</sub>NC can serve as both a substrate and an inhibitor of nitrogenase means either that there are two binding sites for CH<sub>3</sub>NC on the enzyme or that CH<sub>3</sub>NC can bind in both a productive (substrate) and nonproductive (inhibitor) mode to the same

site. Our observation is that a number of nitrogenase substrates ( $C_2H_2 > N_2 \simeq \text{azide} > N_2O$ ) can all both relieve  $CH_3NC$ -(i) inhibition and inhibit  $CH_3NC$ -(s) reduction and in the same order. Because there is no evidence for multiple binding sites for these substrates, we prefer a mechanism whereby  $CH_3NC$  serves as either substrate or inhibitor on binding to the same site of nitrogenase. It should be noted that the  $K_i$  for  $CH_3NC$ -(i) is about 4-fold lower than the  $K_m$  for  $CH_3NC$ -(s). It is hoped that biophysical techniques may soon provide some direct evidence concerning the sites of interaction of  $CH_3NC$  and other substrates and inhibitors on nitrogenase.

## Summary

In summary, our studies have shown the following: (1) CH<sub>3</sub>NC-(i) is a potent reversible inhibitor ( $K_i = 158 \mu M$ ) of total electron flow and appears to uncouple MgATP hydrolysis and electron transfer to substrate; (2) the previously reported self-inhibition by CH<sub>3</sub>NC is artifactual; (3) CH<sub>3</sub>NC-(s) is a substrate that is reduced (six electrons) to  $CH_4 + CH_3NH_2$ , (four electrons) to CH<sub>3</sub>NHCH<sub>3</sub>, and to more CH<sub>3</sub>NH<sub>2</sub> possibly via hydrolysis of a two-electron intermediate; (4) at infinite concentrations, CH<sub>3</sub>NC-(s) can eliminate H<sub>2</sub> evolution; (5) CH<sub>3</sub>NC-(s) appears to be reduced at a state of nitrogenase that is more oxidized than the state responsible for H<sub>2</sub> evolution or N<sub>2</sub> fixation; (6) C<sub>2</sub>H<sub>4</sub> and C<sub>2</sub>H<sub>6</sub> appear to be formed via a reduction followed by an insertion mechanism; (7)  $C_2H_2 >$  $N_2 \simeq azide > N_2O$  can all both relieve CH<sub>3</sub>NC-(i) inhibition and inhibit CH<sub>3</sub>NC-(s) reduction and in the same order, implying productive and nonproductive modes of binding of CH<sub>3</sub>NC to one site.

# Acknowledgments

We are pleased to acknowledge the talents of Deloria Jacobs and Dorothy Lyons in cell growth and protein purification. We also thank Drs. John McDonald, Gary Watt, Franklin Schultz, and William Newton for helpful discussions.

### Supplementary Material Available

Seven tables showing all results in terms of number of replicates, means, and standard deviations and three figures (11 pages). Ordering information is given on any current masthead page.

**Registry No.** CH<sub>3</sub>NC, 593-75-9; N<sub>2</sub>O, 10024-97-2; N<sub>2</sub>, 7727-37-9; NaN<sub>3</sub>, 26628-22-8;  $C_2H_2$ , 74-86-2; CO, 630-08-0; CH<sub>4</sub>, 74-82-8; CH<sub>3</sub>NH<sub>2</sub>, 74-89-5; CH<sub>3</sub>NHCH<sub>3</sub>, 124-40-3; H<sub>2</sub>, 1333-74-0; nitrogenase, 9013-04-1.

#### References

Biggins, D. R., & Postgate, J. R. (1969) J. Gen. Microbiol. 56, 181-193.

Blair, D., & Diehl, H. (1961) Talanta 7, 163-174.

Braaksma, A., Haaker, H., Grande, H. J., & Veeger, C. (1982) Eur. J. Biochem. 121, 483-491.

Bulen, W. A., & LeComte, J. R. (1966) *Proc. Natl. Acad. Sci. U.S.A.* 56, 979–986.

Burgess, B. K., Jacobs, D. B., & Stiefel, E. I. (1980) *Biochim. Biophys. Acta* 614, 196-209.

Burgess, B. K., Wherland, S., Stiefel, E. I., & Newton, W. E. (1981) *Biochemistry* 20, 5140-5146.

Corbin, J. L. (1978) Anal. Biochem. 84, 340-342.

Davis, L. C., Shah, V. K., & Brill, W. J. (1975) *Biochim. Biophys. Acta* 403, 67-78.

Davis, L. C., Henzl, M. T., Burris, R. H., & Orme-Johnson, W. H. (1979) Biochemistry 18, 4860-4869.

Dilworth, M. J., & Thorneley, R. N. F. (1981) *Biochem. J.* 193, 971-983.

- Fiske, C. H., & Subbarow, Y. (1925) J. Biol. Chem. 66, 5103-5108.
- Hageman, R. V., & Burris, R. H. (1978a) Biochemistry 17, 4117-4124.
- Hageman, R. V., & Burris, R. H. (1978b) *Proc. Natl. Acad. Sci. U.S.A.* 75, 2699-2702.
- Hageman, R. V., & Burris, R. H. (1979) J. Biol. Chem. 254, 11189-11192.
- Hardy, R. W. F. (1979) in A Treatise on Dinitrogen Fixation (Hardy, R. W. F., Bottomley, F., & Burns, E. C., Eds.) pp 515-568, Wiley, New York.
- Hardy, R. W. F., & Jackson, E. K. (1967) Fed. Proc., Fed. Am. Soc. Exp. Biol. 26, 725.
- Hwang, J. C., & Burris, R. H. (1972) Biochim. Biophys. Acta 283, 339-350.
- Hwang, J. C., Chen, C. H., & Burris, R. H. (1973) *Biochim. Biophys. Acta* 292, 256-270.
- Karwelk, D. H., & Meyers, C. H. (1979) Anal. Chem. 51, 319-320.
- Kelly, M. (1968) Biochem. J. 107, 1-6.
- Kelly, M. (1969a) Biochim. Biophys. Acta 171, 9-22.
- Kelly, M. (1969b) Biochim. Biophys. Acta 191, 527-540.
- Kelly, M., Postgate, J. R., & Richards, R. L. (1967) *Biochem.* J. 102, 1c-3c.
- Li, J.-G., Burgess, B. K., & Corbin, J. L. (1982) *Biochemistry* 21, 4393-4402.
- Lindroth, P., & Mopper, K. (1979) Anal. Chem. 51, 1667-1674.
- Ljones, T., & Burris, R. H. (1978a) Biochem. Biophys. Res. Commun. 80, 22-25.
- Ljones, T., & Burris, R. H. (1978b) Biochemistry 17, 1866-1872.
- Mortenson, L. E., & Thorneley, R. N. F. (1979) Annu. Rev. Biochem. 48, 387-418.

- Munson, T. O., & Burris, R. H. (1969) J. Bacteriol. 97, 1093-1098.
- Orme-Johnson, W. H., Davis, L. C., Henzl, M. T., Averill, B. A., Orme-Johnson, N. R., Münck, E., & Zimmerman, R. (1977) in *Recent Development in Nitrogen Fixation* (Newton, W. E., Postgate, J. R., & Rodriguez-Barrueco, C., Eds.) pp 131-178, Academic Press, London.
- Reisberg, P. I., & Olson, J. S. (1980) J. Biol. Chem. 255, 4144-4150.
- Rivera-Ortiz, J. M., & Burris, R. H. (1975) J. Bacteriol. 123, 537-545.
- Roth, M. (1971) Anal. Chem. 43, 880-882.
- Segel, I. H. (1975) Enzyme Kinetics, p 46, Wiley-Interscience, New York.
- Seiler, N. (1970) Methods Biochem. Anal. 18, 318.
- Shah, V. K., Davis, L. C., Gordon, J. K., Orme-Johnson, W. H., & Brill, W. J. (1973) Biochim. Biophys. Acta 292, 246-255.
- Sidgwick, N. V. (1937) The Organic Chemistry of Nitrogen, p 318, Oxford University Press, London.
- Silverstein, R., & Bulen, W. A. (1970) *Biochemistry* 9, 3809-3815.
- Smith, B. E. (1983) in Nitrogen Fixation: The Chemical-Biochemical-Genetic Interface (Müller, A., & Newton, W. E., Eds.) pp 23-62, Plenum Press, New York.
- Taylor, S., Ninjor, V., Dowd, D. M., & Tappel, A. L. (1974) *Anal. Biochem.* 60, 153-162.
- Thorneley, R. N. F., & Lowe, D. J. (1982) *Isr. J. Bot. 31*, 1-11.
- Van Hoof, F., & Heyndrickx, A. (1974) Anal. Chem. 46, 286-288.
- Watt, G. D., & Burns, A. (1977) Biochemistry 16, 264-270.
  Wherland, S., Burgess, B. K., Stiefel, E. I., & Newton, W. E. (1981) Biochemistry 20, 5132-5140.